Tomaat: teelt op voedingsoplossing met hogere pH

Doel van de proef

Sommige bacteriën die gunstig zijn voor planten en mogelijk concurrent zijn van de schadelijke Agrobacterium rhizogenes, kunnen zich alleen ontwikkelen bij een pH -waarde van $6,8-7$. Het doel is om de mogelijkheden te bestuderen om tomaten te kweken m.b.v. een voedingsoplossing met een hoge pH door gebruik te maken van gechelateerde of gecombineerde micronutriëntenformuleringen.

Algemene gegevens

Proefveldgegevens:
Proeflocatie: \quad Frankrijk - Pays de la Loire
Bodemtype: Substraatteelt in serre - Hydroponics
In samenwerking met: Ctifl

Behandelingen

2 modaliteiten:

- Normale pH (5,8-6,0) - Klassieke sporenelementenformulering Kanieltra 0 Fe van YARA + FeDTPA
- Hogere $\mathrm{pH}(6,8-7,0)$ - Formulering van gechelateerde of gecombineerde sporenelementen Chelal Hydro NF + Chelal B van BMS MICRO-NUTRIENTS + Fe-DTPA
Het verschil in pH van de voedingsoplossing werd opgestart op 6/02/2019.

Resultaten

Invloed op de pH

	Van 02/01/2019 tot 05/02/2019		Vanaf 06/02/2019	
	pH voeding	pH drainage	pH voeding	pH drainage
Normale $\mathbf{p H}$	5,4	7,0	5,6	6,0
Hogere pH	5,4	6,9	6,4	6,9

Evolutie van de gemiddelde wekelijkse pH van het drainwater

Week
\Rightarrow Het proefopzet werd goed nageleefd.

CHELATED MICRO-NUTRIENTS \& FOLIAR FERTILIZERS

\Rightarrow Vergelijkbare evolutie van LAI-index. Weinig verschil tussen de 2 modaliteiten.

Andere waarnemingen:

- Zelfde bloeicurve
- Geen verschil in oogstdata
- Licht sterkere groei in de modaliteit met hogere pH (+ 26 cm)
- Vergelijkbare evolutie van de stengeldiameter. Weinig verschil tussen de 2 modaliteiten.

	Op 29/08/2019						
	Totaal vermarktbaar gewicht (in $\mathrm{kg} / \mathrm{m}^{2}$)			Aantal vermarktbare vruchten $\left(/ \mathrm{m}^{2}\right)$	Gemiddeld gewicht vermarktbare vruchten (g)	Gemiddeld aantal vruchten per tros	Aantal geoogste vruchten $\left(/ m^{2}\right)$
	Tros	Los	Totaal				
Normale pH	45,02	1,14	46,16	349	132	4,9	362,1
Hogere pH	45,70	1,06	46,76	350	134	4,9	364,5
Statistische test NK bij 5\%	NS						
Variatiecoëfficiënt	4,2	15,4	4,3	0,6	4	0,7	0,6

\Rightarrow Geen significant verschil in vermarktbare opbrengst
\Rightarrow Identieke opbrengstcurves
\Rightarrow Identiek aantal vermarktbare vruchten
\Rightarrow Weinig verschil in gemiddeld gewicht van de tomaten

CONCLUSIE: Geen agronomisch verschil tussen de twee modaliteiten. Het is dus mogelijk om tomaten te telen op een voedingsoplossing met hogere pH waardoor nuttige bacteriën zich zullen kunnen ontwikkelen in het wortelmilieu en bescherming bieden tegen pathogenen.

