

Mais: ECOMETHOD

Ziel des Tests

Bodendüngung mit Stickstoff und Phosphor auf Maisparzelle mit einem Blattnährstoffprogramm reduzieren

Allgemeine Angaben

Angaben des Testfelds:

Standort: Italien – Piemont

In Zusammenarbeit mit: Università degli Studi di Torino

Sähdatum: 26/05/2013 Erntedatum: 07/11/2013

Behandlungen

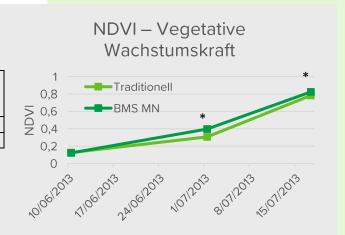
Die Testparzelle wurde in 2 Modalitäten aufgeteilt. Bei jeder Modalität wurden auf 4 verschiedenen Stellen Proben entnommen.

2 Modalitäten:

	Produkt	Dosis	Zeitraum
1	Diammoniumphosphat (18-46-0)	100 kg/ha	Beim Säen
2	Ureum (46-0-0) 230 Einheiten/ha	500 kg/ha	6-8 Blätter -
			01/07/13

⇒ Modalität 2: Programm BMS MN

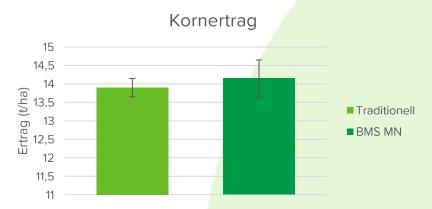
	Produkt	Dosis	Zeitraum
1	Viener Zn		Samenbehandlung
2	Chelal Zn	1,5 L/ha	4-8 Blätter (mit Herbizid nach
	Карра М	8 kg/ha	Austreiben) – 17/06/13
3	Карра М	8 kg/ha	Mit Insektiziden gegen Europäischen Maiszünsler – 11/08/13
4	Stickstoff	160 Einheiten	


DPI – gesetzliche maximale Düngung in Piemont für Mais:

Ν	240 kg/ha
P ₂ O ₅	85 kg/ha
K ₂ O	150 kg/ha

Ergebnisse

Modalität	Feuchtigkeit	Hektolitergewicht	
	der Körner	(bei Feuchtigkeit	
	bei Ernte	von 14% (kg/hl))	
Herkömmlich	28,95%	80,72	
BMS MN	28,30%	80,88	


^{*} statistisch erheblicher Unterschied

Schlussfolgerungen: Die Experimente wurden in einem Jahr ausgeführt, das durch eine besonders kritische Anfangsphase aufgrund der schwierigen Wetterbedingungen gekennzeichnet war, die dazu geführt haben, dass sehr spät gesät wurde. Auch in diesem Fall hat ECOMETHOD bewiesen, dass ein Ertrag möglich ist, der mit der herkömmlichen Düngung vergleichbar ist, mit sogar etwas besseren Eigenschaften (geringere Feuchtigkeit und größeren Wachstumskraft der Pflanzen).

Berechnung des ökologischen Fußabdrucks der Ecomethod

Volumen CO₂eq. ECOMETHOD CO₂	Volumen CO₂eq. HERKÖMMLICH CO₂	Volumen CO ₂ eq. DPI CO ₂
762,1 kg/ha	1.19 <mark>8,6 kg/ha</mark>	1.477,5 kg/ha

CO_2	436,5	Die Reduzierung von CO₂eq. ausgedrückt in kg/ha im Vergleich zur herkömmlichen Düngung
%CO ₂	36,4%	Die prozentuale Einsparung in CO₂eq. im Vergleich zur herkömmlichen Düngung
CO ₂	715,4	Die Reduzierung von CO₂eq. ausgedrückt in kg/ha im Vergleich zur DPI
%CO ₂	48,4%	Die prozentuale Einsparung in CO₂eq. im Vergleich zur DPI