

Maiz: ECOMETHOD

Objetivo del ensayo

Reducir la fertilización al suelo con nitrógeno y fósforo en el maíz utilizando un programa de nutrición foliar.

Información general

Condiciones del ensayo:

Lugar del ensayo: Italia – Piemonte

En colaboración con: Università degli Studi di Torino

Fecha de siembra: 26/05/2013 Fecha de cosecha: 07/11/2013

Tratamientos

La parcela de ensayo fue dividido en 2 modalidades. Se tomaron muestras en 4 sitios diferentes para cada modalidad.

2 modalidades:

➡ Modalidad 1: Fertilización tradicional del agricultor (solo fertilización al suelo)

	Producto	Dosis	Momento de la aplicación
1	Fosfato de diamonio (18-46-0)	100 kg/ha	En la siembra
2	Urea (46-0-0) 230 unidades/ha	500 kg/ha	Estadio 6-8 hojas -01/07/13

⇒ Modalidad 2: Programa BMS MN

	Producto	Dosis	Momento de la aplicación
1	Viener Zn		Tratamiento de semillas
2	Chelal Zn	1,5 L/ha	Estadio de 4-8 hojas (con la herbicida de
	Карра М	8 kg/ha	post-emergencia) – 17/06/13
3	Карра М	8 kg/ha	Con insecticida contra el barrenador
			europeo del maíz – 11/08/13
4	Nitrógeno	160 unidades	

<u>DPI – Dosis máxima permitida en la región de Piamonte para el maíz:</u>

Ν	240 kg/ha
P ₂ O ₅	85 kg/ha
K ₂ O	150 kg/ha

Resultados

Modalidad	Humedad de los granos a la cosecha	Densidad (con humedad 14% (kg/hl))	
Tradicional	28,95%	80,72	
BMS MN	28,30%	80,88	

^{*} diferencia estadísticamente significativa

➡ Conclusión: El ensayo fue llevado a cabo en un año marcado por una fase inicial particularmente crítica debido a las condiciones climáticas difíciles que provocaron una siembra tardía. También en este caso, ECOMETHOD ha demostrado que se puede obtener un rendimiento comparable a la fertilización tradicional, con propiedades incluso ligeramente mejores (menor contenido de humedad y mayor vigor de las plantas).

Cálculo de la huella de carbono de Ecomethod

Cantidad CO ₂ eq. ECOMETHOD	Cantidad CO₂eq. TRADITIONAL CO₂	Cantidad CO₂eq. DPI CO₂
762,1 kg/ha	1.198,6 kg/ha	1.477,5 kg/ha

CO_2	436,5	La reducción de CO ₂ eq. en kg/ha en comparación con la fertilización tradicional
%CO ₂	36,4%	El porcentaje de reducción de CO ₂ eq. en comparación con la fertilización tradicional
CO_2	715,4	La reducción de CO ₂ eq. en kg/ha en comparación con el DPI
%CO ₂	48,4%	El porcentaje de reducción de CO ₂ eq. en comparación con el DPI